CAST-5000 GPS Wavefront Generator

System Features

- Generates Single Coherent Wavefront of GPS
- 6-DOF Motion Generation Capability
- Complete SV Constellation Editing
- Post Mission Processing via ICD-GPS-150/153
- Differential/Relative Navigation
- Antenna Pattern Modeling
- Waypoint Navigation
- RAIM Events
- Multipath Modeling
- Spoofer Simulation
- Satellite Clock Errors
- External Trajectory Input
- External Ephemeris and Almanac
- Several Iono and Tropo Models
- Modifiable Navigation Message
- Modeled Selective Availability
- Time-tagged Satellite Events
- Selectable Host Vehicle Parameters

CRPA and Attitude Determination Receiver Testing

The CAST-5000 produces a single coherent wavefront of GPS RF signals to provide repeatable testing in the laboratory environment or anechoic chamber. The basic system generates four independent, coherent simulations that reference a single point. With an intercard carrier phase error of less than one centimeter, the CAST-5000 is extremely accurate.

The system generates a wavefront of GPS when its GPS RF generator cards are operated in a ganged configuration. Each generator card provides a set of GPS satellites coherent with the overall configuration. Several RF generator cards may be utilized together, ensuring phase coherence among the bank of signal generator cards.

The CAST-5000 is the only Controlled Reception Pattern Antenna (CRPA) tester that allows a full end-to-end test of the antenna system. The CRPA antenna, antenna electronics and the GPS receiver can be tested as a unit with or without radiating signals.

The CAST-5000 System Interface

System Specifications

Output Frequency

- GPS L1
- GPS L2
1575.42 MHz
1227.60 MHz

Maximum Dynamics

- Velocity
$>60,000 \mathrm{~m} / \mathrm{s}$
- Acceleration $\pm 150,000 \mathrm{~m} / \mathrm{s}^{2}$
- Jerk $\pm 150,0000 \mathrm{~m} / \mathrm{s}^{3}$

Signal Level

- GPS L1 C/A Code
- GPS L1 P Code
- GPS L2 P Code

Signal Level Control

- Range

$$
\pm 30 \mathrm{~dB}
$$

- Resolution
0.1 dB

L1/L2 Differential Delay

- Range $\pm 0.3 \mathrm{~m}$
- Resolution
$<1 \mathrm{~mm}$

Signal Accuracy

- Pseudorange
- Pseudorange Rate

1 mm

- Delta Pseudorange $1 \mathrm{~mm} / \mathrm{s}$
- Interchannel Bias

1 mm

- Uncontrolled Bias
$<1 \mathrm{~mm}$
- Bias Repeatability (initial)
$<1 \mathrm{~mm}$
- Bias Stability (operational)
$<1 \mathrm{~mm}$
ignal Quality
- Spurious

$$
<-45 \mathrm{dBc}
$$

- Harmonics
- Reference Oscillator 100 MHz OCXO
- Frequency Stability $3 \times 10-8$ per day

CRPA Testing Application

The configuration to the right (fig. 1.0) illustrates a system that simulates a wavefront of GPS from twelve satellites for a four-element CRPA. This application utilizes jammers for L1 and L2 as well as twelve satellites for each element of the CRPA antenna.

System Configuration

- GPS Satellites Generated

12 to 84
L1 and L2

- Size ($\mathrm{H} \times \mathrm{W} \times \mathrm{D}$) $31^{\prime \prime} \times 24^{\prime \prime} \times 32^{\prime \prime}$
- Weight (approximate) 250 lbs
- Power Required
- Operating System

110/220 VAC $50 / 60 \mathrm{~Hz}, 600 \mathrm{~W}$
Windows, Lynx

System Options

- Up to 7 Element CRPA Testing
- Up to 8 Interference Generators
- 6-DOF Real-Time Interface
- Y-Code
- SAASM
- 1553/1394
- External Precision Oscillator
- Precision Guided Munitions Testing
- Terrain Obscuration (TOP)
- TOP with Enhanced 3-D Visualization
- SBAS Simulation
- M-Code
- L2C
- L5

System Upgrade Path

- CAST-3000 for EGI Integration
- CAST EMT3500-3 for EGI Diagnostics
- CAST-4000 for Inertial Modeling

